Q2 (a) If $\mathbf{u}=\mathrm{x} \phi(\mathrm{y} / \mathrm{x})+\psi(\mathrm{y} / \mathrm{x})$, prove that $\mathrm{x}^{2} \frac{\partial^{2} u}{\partial \mathrm{x}^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$

Answer

$$
\begin{aligned}
& \text { (2) a). Let } u=z_{1}+z_{2} .(y \mid x) \text { and } z_{2}=\psi(y \mid x) \\
& \text { there } z_{1} \text { iss a homogeneous function of } x \text { and } y \\
& \text { of degree } 1 \text { and } z_{2} \text { is a homogeneous function of } \\
& x \text { and } y \text { of defoe zero. Therefore, by Eulesis } \\
& \text { theorem - } \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x \frac{\partial}{\partial x}\left(z_{1}+z_{2}\right)+y \frac{\partial}{\partial y}\left(z_{1}+z_{2}\right) \\
& =\left(x \frac{\partial z_{1}}{\partial x}+y \frac{\partial z_{1}}{\partial y}\right)+\left(x \frac{\partial z_{2}}{\partial x}+y \frac{\partial z_{2}}{\partial y}\right) \\
& =1 \cdot z_{1}+0 . z_{2}, b y \text { Euter/s throne } \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=z_{1} \quad \longrightarrow c_{1} \text {, } \\
& \text { Differentiating } c_{1} \text {, w.r.t. } x \text { and } y \text { respectively, } \\
& \text { and }\left\{\begin{array}{l}
x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+y \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial z_{1}}{\partial x_{1}} \quad \longrightarrow(2) \\
x \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial u}{\partial y}+y \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial z_{1}}{\partial y} \quad \longrightarrow(3)
\end{array}\right. \\
& \text { mattiplying }(2) \text { by } x \text { and } 31 \text { by } y \text { and adding, } \\
& \text { we get - } \\
& \int x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x^{\partial} y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \\
& =x \frac{\partial z_{1}}{\partial x}+y \frac{\partial z_{1}}{\partial y} \\
& 05 \quad x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x^{2} y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+z_{1}=1 \cdot z_{1} \\
& {\left[\because x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=z_{1}\right. \text {, by (1) }} \\
& \begin{array}{r}
\text { and } x \frac{\partial z_{1}}{\partial x}+y \frac{\partial z_{1}}{\partial y}=1 . z_{1}, \text { by Euteris } \\
\text { theorem] }
\end{array} \\
& \text { or } \quad x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x^{2} y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0 \text {. }
\end{aligned}
$$

Q2 (b) Show that the maximum and minimum of the radii vectors of the sections of the surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \quad$ by the plane $\lambda x+\mu y+\gamma z=0$ are given by the equation-

$$
\frac{a^{2} \lambda^{2}}{1-a^{2} r^{2}}+\frac{b^{2} \mu^{2}}{1-b^{2} r^{2}}+\frac{c^{2} \gamma^{2}}{1-c^{2} r^{2}}=0
$$

Answer
(2) b). We have to find the maximum and minimum values of r, where -

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

Afro, the variables x, y, z are connected by the relations -

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=\left(x^{2}+y^{2}+z^{2}\right)^{2}=r^{4}
$$

$\longrightarrow(2)$
and $\quad \lambda x+\mu y+\lambda z=0$
From (1)

$$
2 r d r=2 x d x+2 y d y+2 z d z
$$

For a maximum or a minimum of r, we have-

$$
d y=0 \Rightarrow x d x+y d y+z d z=0 \rightarrow(4)
$$

feerertiating (2), we get

$$
\frac{2 x}{a^{2}} d x+\frac{2 y}{b^{2}} d y+\frac{2 z}{c^{2}} d z=4 r^{3} d r
$$

But for a maximum or a minimum of r, we have dr oo

$$
\therefore \frac{x}{a^{2}} d x+\frac{y}{b^{2}} d y+\frac{z}{c^{2}} d z=0 \quad \rightarrow(5)
$$

Also, differentiating (3), we get -

$$
\lambda d x+\mu d y+\gamma d z=0 \quad \longrightarrow(6)
$$

Multiplying (4) by 1 , (5) by λ_{1} and (6) by λ_{2} and adding and then eavuating to zero, the coefficients of $d x, d y, d z$, we get _

$$
\begin{align*}
& x+\frac{x}{a^{2}} \lambda_{1}+\lambda \lambda_{2}=0 \tag{7}\\
& y+\frac{y}{b^{2}} \lambda_{1}+\mu \lambda_{2}=0 \tag{8}\\
& z+\frac{z}{c^{2}} \lambda_{1}+\lambda \lambda_{2}=0 \tag{a}
\end{align*}
$$

Multiplying (7), (8), (a) by x, y, z respectively and adding, we get-

$$
\gamma^{2}+\gamma^{4} \lambda_{1}+0 \cdot \lambda_{2}=0 \quad \text { or } \lambda_{1}=-\frac{1}{\gamma^{2}}
$$

\therefore from (1), we have-

$$
\begin{gathered}
x-\frac{x}{a^{2}} \cdot \frac{1}{\partial^{2}}+\lambda \lambda_{2}=0 \\
x=\frac{a^{2} r^{2} \lambda_{2}}{1-a_{2}^{2} r^{2}}
\end{gathered}
$$

fimilardy from (8) \& (9), woe have-

$$
y=\frac{b^{2} \gamma^{2} \mu_{2}}{1-b^{2} \gamma^{2}} \quad \& \quad z=\frac{c^{2} \gamma^{2} \gamma \lambda_{2}}{1-c^{2} \gamma^{2}}
$$

$$
\begin{aligned}
& \text { Sustituting these values of } x_{1} y_{1} z \text { in } \lambda x+1 \text { Jot } x^{2} \\
& \text { cor get } \\
& \frac{a^{2} \gamma^{2} \lambda^{2} \lambda_{2}}{1-a^{2} \gamma^{2}}+\frac{b^{2} \gamma^{2} \mu^{2} \lambda_{2}}{1-b^{2} \gamma^{2}}+\frac{c^{2} \gamma^{2} \gamma^{2} \lambda_{2}}{1-\gamma^{2} \gamma^{2}}=0 \\
& \text { or } \frac{a^{2} \lambda^{2}}{1-a^{2} \gamma^{2}}+\frac{b^{2} \mu^{2}}{1-b^{2} \gamma^{2}}+\frac{c^{2} \gamma^{2}}{1-c^{2} \gamma^{2}}=0
\end{aligned}
$$

Q3 (a) Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Answer

3) a). The region of integration $c a n$ be consiced ats bounded by_

$$
\begin{aligned}
& y=-b \sqrt{1-x^{2} / a^{2}} \quad, \quad y=b \sqrt{1-x^{2} / a^{2}} \\
& x=-a \text { and } x=a \\
& \therefore \iint(x+y)^{2} d x d y=\int_{-a}^{a} \\
& \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}}\left(x^{2}+y^{2}+2 x y\right) d x d y \\
& \text {, the first integration to be performed } \\
& \text { 6.0.t. y regarding } x \text { as constant } \\
& =\int_{-a}^{a} 2 \int_{0}^{b \sqrt{1-x^{2} / a^{2}}}\left(x^{2}+y^{2}\right) d x d y \\
& \text { [} \because 2 x y \text { being an odd function of } y \text {, } \\
& \text { its integration under the given } \\
& \text { limits of } y \text { is } 0] \\
& =2 \int_{-a}^{a}\left[x^{2} y+\frac{y 3}{3}\right]_{0}^{b \sqrt{1-x^{2} / a^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{-a}^{a}\left[x^{2} b \sqrt{1-\frac{x^{2}}{a^{2}}}+\frac{b^{3}}{3}\left(1-\frac{x^{2}}{a^{2}}\right)^{3 / 2}\right] d x \\
& =4 \int_{0}^{a}\left[x^{2} b \sqrt{1-\frac{x^{2}}{a^{2}}}+\frac{b^{3}}{3}\left(1-\frac{x^{2}}{a^{2}}\right)^{3 / 2}\right] d x \\
& =4 b \int_{0}^{\pi / 2}\left[a^{2} \sin ^{2} \theta \cos \theta+\frac{b^{2}}{3} \cos ^{4} \theta\right] a \cos \theta d \theta \\
& \text {, putting } x=a \sin \theta \Rightarrow d x=a \cos \theta d \theta \\
& =4 a b \int_{0}^{\pi / 2}\left[a^{2} \sin ^{2} \theta \cos ^{2} \theta+\frac{b^{2}}{3} \cos ^{4} \theta\right] d \theta \\
& =4 a b\left[a^{2} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta+\frac{b^{2}}{3} \int_{0}^{\pi / 2} \cos ^{4} \theta d \theta\right] \\
& =4 a b\left[a^{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}+\frac{b^{2}}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right] \text {, by walls's } \\
& =4 a b\left[\frac{1}{16} \pi a^{2}+\frac{1}{16} \pi b^{2}\right] \\
& =\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Ans

Q3 (b) Evaluate $\iiint z^{2} d x d y d z$ over the sphere $x^{2}+y^{2}+z^{2}=1$

Answer

(3) b). Here the region of integration can be expressed ass -

$$
\begin{array}{r}
-1 \leqslant x \leqslant 1,-\sqrt{1-x^{2}} \leqslant y \leqslant \sqrt{1-x^{2}}, \\
-\sqrt{1-x^{2}-y^{2}} \leqslant z \leqslant \sqrt{1-x^{2}-y^{2}}
\end{array}
$$

the required triple integral

$$
=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} z^{2} d x d y d z
$$

$$
=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-1 x^{2}}}\left[\frac{z^{3}}{3}\right]_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} d x d y
$$

$$
=\frac{1}{3} \int_{-1}^{1}\left[\int_{\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 2\left(1-x^{2}-y^{2}\right)^{3 / 2} d y\right] d x
$$

$$
=\frac{2}{3} \int_{-1}^{1}\left[\int_{-\pi 12}^{\pi 12}\left[\left(1-x^{2}\right) \cos ^{2} \theta\right]^{3 / 2} \sqrt{1-x^{2}} \cos \theta d \theta\right] d x,
$$

$$
\text { by batting } y=\sqrt{1-x^{2}} \sin \theta
$$

$$
\Rightarrow d y=\sqrt{1-x^{2}} \cos \theta d \theta
$$

$$
y=0 \Rightarrow \theta=0+y=\sqrt{1-x^{2}} \Rightarrow \theta=\frac{\pi}{2}
$$

$$
\frac{2}{3} \int_{-1}^{1}\left[2 \int_{0}^{\pi 12}\left(-x^{2}\right)^{2} \cos ^{4} \theta d \theta\right] d x
$$

$$
=\frac{4}{3} \int_{-1}^{1}\left(\left(-x^{2}\right)^{2} \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} d x\right.
$$

$$
=\frac{\pi}{4} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x
$$

$$
=\frac{\pi}{4} \cdot 2 \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x
$$

$$
=\frac{\pi}{2}\left[x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right]_{0}
$$

$$
=\frac{\pi}{2}\left[1-\frac{2}{3}+\frac{1}{5}\right]
$$

$$
=\frac{\pi}{2} \cdot \frac{8}{15}
$$

$$
=\frac{4 \pi}{15}
$$

Q4 (a) For what values of η, the equations $x+y+z=1, x+2 y+4 z=\eta, x+4 y+$ $10 z=\eta^{2}$ have a solution and solve them completely in each case.

Q4 (b) Determine the eigenvalues and the corresponding eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

$$
\text { or (2-入) }\left|\begin{array}{ccc}
6-\lambda & -2 & 0 \\
-4 & 4-\lambda & 0 \\
2 & -1 & 1
\end{array}\right|=0, \quad R_{2} \rightarrow R_{2}-R_{3}
$$

or

$$
(2-\lambda)[(6-\lambda)(4-\lambda)-8]=0
$$

or $(2-\lambda)\left(\lambda^{2}-10 \lambda+161=0\right.$

$$
\text { or }(2-\lambda)(\lambda-2)(\lambda-8)=0
$$

\therefore the eigenvalues of A are given by-

$$
\lambda=2,2,8
$$

The eigenvectors of A corresponding to the eigenvah \& are given by the mon-zero solutions of the eau?

$$
\begin{aligned}
& (A-B I) X=0 \\
& \text { or }\left[\begin{array}{ccc}
6-8 & -2 & 2 \\
-2 & 3-8 & -1 \\
2 & -1 & 3-8
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \text { or }\left[\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \text { or }\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \quad \begin{array}{l}
\quad \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{array}
\end{array} \\
& \text { or }\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], R_{3}+R_{3}-R_{2}
\end{aligned}
$$

The coefficient matrix of these ens is of rank 2 . \therefore these ears possess $3-2=1$ limearsly independent sad n

$$
\begin{aligned}
& \text { These eans can be coritten ars- ber }-2 x_{1}-2 x_{2}+2 x_{3}=0, \quad-3 x_{2}-3 x_{3}=0 \\
& \text { The Qarst en? gives } x_{2}=-x_{3} \\
& \text { Let us take } x_{3}=1, x_{2}=-1 \\
& \text { Then the firot enn givers } x_{1}=2
\end{aligned}
$$

$\cdots, \quad x,\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ is an eigemvectar of A A
Every nom-zerso maltipee of $x>$ irs an
eggenvector of A coroespording to the eigennalme8.
The eigenvectors of A coronsfonding to the
"lgenvalve 2 ate given by the mon-zens solps
of the enn $(A-2$ I) $x=0$

$$
\left[\begin{array}{ccc}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

or $\left[\begin{array}{ccc}-2 & 1 & -1 \\ 4 & -2 & 2 \\ 2 & -1 & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], R_{1} R_{2}$
$0\left[\begin{array}{ccc}-2 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \begin{aligned} & R_{2} \rightarrow R_{2}+2 R_{1} \\ & R_{3} \rightarrow R_{3}+R_{1}\end{aligned}$
The coefficient matrin of these eavirs is of aank 1 .
these -evis pargess $3-1=2$ line araly indepentent ealis. These -enns redince to

$$
-2 x_{1}+x_{2}-x_{3}=0
$$

Heroe $x_{2}=\left[\begin{array}{c}1 \\ 0 \\ 2\end{array}\right]+x_{3}=\left[\begin{array}{c}1 \\ 2 \\ 0\end{array}\right]$ arse treo linearshy cindeperndent sestrs of thirs eni?.
$\therefore x_{2}+x_{3}$ are two eigenvectors of A coreponting to the eigervalue 2. If $c_{1} \& c_{2}$ are scalars nol both eaval to zero then $c_{1} x_{2}+c_{2} x_{3}$ gives all the eigenvectors of A corresponding to the rigervalue 2 .

Q5 (a) Find by Newton - Raphson method, the real root of the equation:

$$
3 x=\cos x+1
$$

Nearer to 1, correct to three decimal places.

Q5 (b) Apply Runge-Kutta method of fourth order to find approximate value of \mathbf{y} for $\mathbf{x}=0.2$, in steps of 0.1 , if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ where $x=0$

Answer
(5) b)

Here we take $h=0.1$ and carry out the calculations in two steps.
Step I.

$$
\begin{aligned}
& x_{0}=0, y_{0}=1, \quad h=0.1 \\
& k_{1}=h+\left(r_{0}, y_{0}\right) \equiv 0.1 f(0,1)=0.1000 \\
& k_{2}=h+\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{1}\right)=0.1+(0.05,1.1) \\
& \therefore 0.1152 \\
& k_{3}=h f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{2}\right)=0.1 f(0.05,1.1152) \\
& =0.1168 \\
& k_{4}=h+\left(y_{0} h, y_{0}+k_{3}\right): 0.1+(0.1,1.1168) \\
& =0.1347 \\
& \therefore k=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =\frac{1}{6}(0.1000+0.2304+0.2336+0.1347)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore k= 0.1165 \\
& \text { which gives } \quad y(0.1)=y_{0}+k=1.1165 \\
& \text { step II) } \quad x_{1}=x_{0}+h=0.1 \\
& \quad y_{1}=1.1165, h=0.1 \\
& k_{1}=h f\left(x_{1}, y_{1}\right)=0.1 f(0.1,1.1165)=0.1347 \\
& k_{2}=h f\left(x_{1}+\frac{1}{2} h, y_{1}+\frac{1}{2} k_{1}\right)=0.1 f(0.15,1.1838)=0.1551 \\
& k_{3}= h+\left(x_{1}+\frac{1}{2} h, y_{1}+\frac{1}{2} k_{2}\right)=0.1 f(0.15,1.194) \\
&=0.1576 \\
& k_{4}= h+\left(x_{1}+h, y_{2}+k_{3}\right)=0.1+(0.2,1.1576) \\
&==0.1823 \\
& \therefore k= \frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
&= 0.1571 \\
& \therefore y(0.2)= y_{1}+k=1.2736
\end{aligned}
$$

Ans

Q6 (a) Solve the equation $\cos x d y=y(\sin x-y) d x$

Answer

$$
\begin{aligned}
& \text { 3) a). Given- } \\
& \cos x d y=y(\sin x-y) d x \\
& \cos x \frac{d y}{d x}-y \sin x=-y^{2} \\
& \frac{d y}{d x}-y \tan x=-y^{2} \sec x \\
& -\frac{1}{y^{2}} \frac{d y}{d x}+\frac{1}{y} \tan x=\sec x \\
& \text { Put } \frac{1}{y}=v \text { then }-\frac{1}{y^{2}} \frac{d y}{d x}=\frac{d v}{d x}
\end{aligned}
$$

$$
\operatorname{san}^{n} \text { of }(2) \text { is - }
$$

$$
v \cdot \sec x=\int \sec x \cdot \sec x d x+c
$$

$$
\text { , } \rightarrow \text { arbitrany conothent }
$$

$$
v \sec x=\int \sec ^{2} x d x+c
$$

$$
v \sec x=\tan x+c
$$

Put $V=\frac{1}{y}-$

$$
\begin{aligned}
& \frac{1}{y} \sec x=\tan x+c \\
\therefore \quad & \sec x=y(c+\tan x)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d v}{d x}+v \cdot \tan x=\sec x, \text { from }(1) \rightarrow(2) \\
& I, F=e^{\int \tan \alpha d x}=e^{\log \operatorname{coc} x}=\sec x
\end{aligned}
$$

Q6 (b) Find the orthogonal trajectories of the family of curves:

$$
\frac{x^{2}}{\left(a^{2}+\lambda\right)}+\frac{y^{2}}{\left(b^{2}+\lambda\right)}=1
$$

Where λ is the parameter.
Answer
(6) b.

Given

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

$$
\rightarrow(1)
$$

Ditterontiating ea n 11 w.r.r.t. x, we gets

$$
\begin{aligned}
& \frac{2 x}{a^{2}+\lambda}+\frac{2 y}{b^{2}+\lambda} \frac{d y}{d x}=0 \\
& x\left(b^{2}+\lambda\right)+y\left(\frac{d y}{d x}\right)\left(a^{2}+\lambda\right)=0 \\
& \text { or } \lambda\left[x+y\left(\frac{d y}{d x}\right)\right]=-\left[b^{2} x+a^{2} y\left(\frac{d y}{d x}\right)\right] \\
& \Rightarrow \lambda=-\frac{\left[b^{2} x+a^{2} y\left(\frac{d y}{d x}\right)\right]}{\left[x+y\left(\frac{d y}{d x}\right)\right]}
\end{aligned}
$$

Thus -

$$
a^{2}+\lambda=\frac{\left(a^{2}-b^{2}\right) x}{x+y\left(\frac{d y}{d x}\right)}
$$

$$
\text { and } b^{2}+\lambda=-\frac{\left(a^{2}-b^{2}\right) y \frac{d y}{d x}}{x+y\left(\frac{d y}{d x}\right)}
$$

Substituting there values in excl, ge get

$$
\frac{x^{2}\left[x+y\left(\frac{d y}{d x}\right)\right]}{\left(a^{2}-b^{2}\right) x}-\frac{y^{2}\left[x+y\left[\frac{d y}{d x}\right]\right]}{\left(a^{2}-b^{2}\right) y \frac{d y}{d x}}=1
$$

or

$$
\begin{equation*}
x^{2}-y^{2}+x y\left(\frac{d y}{d x}-\frac{1}{d y / d x}\right)=a^{2}-b^{2} \tag{2}
\end{equation*}
$$

Put $-\frac{d x}{d y}$ for $\frac{d y}{d x}$ in en ${ }^{n}(2)$, the differsential en of the orthogonal trajectories irs-

$$
\begin{gathered}
x^{2}-y^{2}+x y\left(-\frac{d x}{d y}+\frac{d y}{d x}\right)=a^{2}-b^{2} \\
\text { or } \quad x^{2}-y^{2}+x y\left(\frac{d y}{d x}-\frac{1}{d y \mid d x}\right)=a^{2}-b^{2}
\end{gathered}
$$ culrich is same as enn^{n} (2).

\therefore solving it, we shall get.

$$
\frac{x^{2}}{a^{2}+\mu}+\frac{y^{2}}{b^{2}+\mu}=1
$$

An being the parameter, as the eam of the orthogonal trajectories. \therefore the system of given confocal conics $\frac{x^{2}}{\left(a^{2}+\lambda\right)}+\frac{y^{2}}{\left(b^{2}+\lambda\right)}=1$ is self-orthogonal.

Ans

Q7 (a) Find the solution of the equation $\frac{d^{2} y}{d x^{2}}+4 y=8 \cos 2 x$

$$
\text { given that } y=0 \text { and } \frac{d y}{d x}=2 \text { when } x=0
$$

Answer

$$
\begin{aligned}
& \text { (1) a) The given differential en can be writion } \\
& \left(\mathrm{D}^{2}+4\right) y=8 \cos 2 x \quad \rightarrow(1) \\
& \text { The A.E! is- } \\
& m^{2}+4=0 \quad \Rightarrow \quad m= \pm 2 \text { i } \\
& \text { CF. }=c_{1} \cos 2 x+c_{2} \sin 2 x \\
& \text { PhI. }=\frac{1}{D^{2}+4} 8 \cos 2 x=8 \frac{1}{D^{2}+4} \cos 2 x \\
& =8 \quad\left[\text { the real past in } \frac{1}{D^{2}+n} e^{2 i x}\right] \\
& \text { Ferry } \\
& -x(2) \\
& \text { Now- } \\
& \frac{1}{D^{2}+4} e^{2 i x}=\frac{1}{(D+2 i)(D-2 i)} e^{2 i x} \\
& =\frac{1}{(2 i+2 i)(\overline{D-2 i})} e^{2 i x} \\
& \begin{array}{l}
\text {, patting } 2 i \text { for } \Rightarrow \text { in } \\
\text { the factor } D+2 i
\end{array} \\
& =\frac{1}{4 i(D-2 i)} e^{2 i x} \\
& =\frac{1}{4 i} e^{2 i x} \frac{1}{(D+2 i-2 i)} \\
& =\frac{1}{4 i} e^{2 i x} \frac{1}{D} 1 \\
& =\frac{1}{4 i} e^{2 i x} x \\
& =\frac{x}{4 i}(\cos 2 x+i \sin 2 x) \\
& =-\frac{i x}{4}(\cos 2 x+i \sin 2 x)
\end{aligned}
$$

$$
=-\frac{i x}{4} \cos 2 x+\frac{x}{4} \sin 2 x
$$

\therefore the real part in $\frac{1}{D^{2}+4} e^{2 i x}$

$$
=\frac{x}{4} \sin 2 x
$$

Put in ens (2), we getPI. $=8 \times \frac{x}{x} \sin 2 x=2 x \sin 2 x$
is -
\therefore the general solution of the given diffean

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+2 x \sin 2 x \longrightarrow(3)
$$

Given $y=0$ and $\frac{d y}{d x}=2$ when $x=0$
From (3) -

$$
\begin{aligned}
\frac{d y}{d x}=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x & +2 \sin 2 x \\
& +4 x \cos 2 x
\end{aligned}
$$

Patting given conditions in (5) \& (4), we get

$$
0=c_{1} \text { and } 2=2 c_{2}
$$

$$
\Rightarrow c_{2}=1
$$

Putting values of $c_{1} \& c_{2}$ in (3), we get -

$$
y=\sin 2 x+2 x \sin 2 x
$$

which is the seavired solution.
Ans

Q7 (b) Solve by the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}
$$

Answer

(1) b). Given diff. en is-

$$
\begin{aligned}
& \quad \frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}} \quad \longrightarrow(1) \\
& \text { C.F. of the e- ain- (1) is given by- } \\
& \frac{d^{2} y}{d x^{2}}-y=0
\end{aligned}
$$

$$
\Rightarrow y=c_{1} e^{x}+c_{2} e^{-x}
$$

let $y=A e^{x}+B e^{-x}$ be the complete son of The given diff. evan where $A \&$ is arose functions of x so chosen that the given diff.eqn will be satisfied.

$$
\frac{d y}{d x}=A e^{x}+B e^{-x}+\frac{d A}{d x} e^{x}+\frac{d B}{d x} e^{x}
$$

$$
\text { Let us choose } A \text { \& } B \text { sit. }
$$

$$
\begin{aligned}
& e^{x} \frac{d A}{d x}+e^{-x} \frac{d B}{d x}= \\
& \frac{d y}{d x}=A e^{x} B e^{-x}
\end{aligned}
$$

$$
\text { and } \frac{d^{2} y}{d x^{2}}=\frac{d A}{d x} e^{x}-\frac{d B}{d x} e^{-x}+A e^{x}+B e^{-x}
$$

Putting these values an the given diff. ear (1),

$$
\text { cot } g e^{-A}
$$

$$
e^{x} \frac{d A}{d x}-e^{-x} \frac{d B}{d x}=\frac{2}{1+e^{x}} \quad \longrightarrow(3)
$$

$$
\text { Solving }(2)+(5) \text {, we get - }
$$

$$
\frac{d A}{d x}=\frac{e^{-x}}{1+e^{x}} \quad \text { and } \quad \frac{d B}{d x}=-\frac{e^{x}}{1+e^{x}}
$$

Integrating these, we get -

$$
\begin{aligned}
A & =\int \frac{e^{-x}}{1+e^{x}} d x+c_{1} \\
& =\int \frac{d z}{z^{2}(1+z)}+c_{1} \text {, putting } e^{x}=z \\
& =\int\left(\frac{1}{z^{2}}-\frac{1}{z}+\frac{1}{1+z}\right) d z+c_{1} \\
& =-\frac{1}{z}-\log z+\log (1+z)+c_{1} \\
& =-\frac{1}{z}+\log \left(\frac{1+z}{z}\right)+c_{1} \\
A & =\log \left(\frac{1+e^{x}}{e^{x}}\right)-e^{-x}+c_{1}
\end{aligned}
$$

and $B=-\int \frac{e^{x}}{1+e^{x}} d x+c_{2}$

$$
=-\log (1+e x)+c_{2}
$$

Putting these values in $y=A e^{x}+B e^{-x}$,
the general solution of the given diff. en is-

$$
\begin{aligned}
y=c_{1} e^{x}+c_{2} e^{-x}+ & e^{x} \log \left(\frac{1+e^{x}}{e^{x}}\right) \\
& -1-e^{-x} \log \left(1+e^{x}\right)
\end{aligned}
$$

Ans

Q8 (a) Show that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+b x)^{m+n}} d x=\frac{1}{(a+b)^{m} a^{n}} B(m, n)$
where $B(m, n)$ is Beta function.
Answer
(8) a). The given integral is-

$$
I=\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+b x)^{n+n}} d x
$$

$$
=\int_{0}^{1}\left(\frac{x}{a+b x}\right)^{m-1}\left(\frac{1-x}{a+b x}\right)^{n-1} \frac{1}{(a+b x)^{2}} d x
$$

$$
\text { Put } \frac{x}{a+b x}=\frac{y}{a+b}
$$

$$
\text { so that } \frac{(a+b x) \cdot 1-x \cdot b}{(a+b x)^{2}} d x=\frac{d y}{a+b}
$$

$$
\text { ie. } \frac{1}{(a+b x)^{2}} d x=\frac{d y}{a(a+b)}
$$

Further
\qquad

$$
\begin{aligned}
\frac{1-x}{a+b x}=\frac{1}{a} \frac{a-a x}{a+b x} & =\frac{1}{a}\left[\frac{a+b x-a x-b x}{a+b x}\right] \\
& =\frac{1}{a}\left[1-\frac{x(a+b)}{a+b x}\right] \\
& =\frac{1-y}{a}
\end{aligned}
$$

$$
\text { Also, when } x=0, y=0 \text { and when } x=1, y=1
$$

$$
\therefore I=\int_{0}^{1}\left(\frac{y}{a+b}\right)^{m-1}\left(\frac{1-y}{a}\right)^{n-1} \frac{d y}{a(a+b)}
$$

$$
=\frac{1}{(a+b)^{m} a^{n}} \int_{0}^{1} y^{m-1}(1-y)^{n-1} d y=\frac{B(m, n)}{(a+b)^{m} a^{n}}
$$

Q8 (b) Solve following differential equation $\frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+4 x y=x^{2}+2 x+2$ in power of x .

Answer

(8) b). Given diff. ex is-

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+4 x y=x^{2}+2 x+2 \quad \rightarrow(1) \tag{11}
\end{equation*}
$$

$$
\text { Here } x=0 \text { is an ordinary point. }
$$

Let a trial solution in the from of the series of the given diff. eam be-

$$
y=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{1} x^{n}+\cdots
$$

$$
=\sum^{\infty} c_{n} x^{n}
$$

$$
n=0
$$

Differentiating (1), we get-

$$
\frac{d y}{d x}=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots+n c_{n} x^{n-1}+\cdots
$$

and $\frac{d^{2} y}{d x^{2}}=2 c_{2}+6 c_{3} x+\cdots+n(n-1) c_{n} x^{n+2}$
$+\cdots \rightarrow 41$
Putting these values in the given evan (1),
cone get -

$$
\begin{gathered}
\left(2 c_{2}+6 c_{3} x+\cdots\right)-2 x^{2}\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots\right) \\
+4 x\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots\right) \\
-x^{2}-2 x-2=0
\end{gathered}
$$

or $\left(2 c_{2}-2\right)+\left(6 c_{3}+x c_{0}-2\right) x+\left(12 c_{4}+2 c_{1}-1\right) x^{2}$ $+20 c_{5} x^{3}+\cdots+\left[(n+2)(n+1) c_{n+2}\right.$
which is an identity in x. $\quad+\cdots=0$ we am equate to zero the coefficients of various powers of x.

Equating to zero, the coefficients of various. powers of x, we get-

$$
\begin{aligned}
& 2 c_{2}-2=0 \quad \text { i.e. } c_{2}=1 \\
& 6 c_{3}+4 c_{0}-2=0 \quad \Rightarrow c_{3}=\frac{1}{3}-\frac{2}{3} c_{0} \\
& 12 c_{4}+2 c_{1}-1=0 \Rightarrow c_{4}=\frac{1}{12}-\frac{1}{6} c_{1}
\end{aligned}
$$

All other coefficients are given by the relation-

$$
c_{n+2}=\frac{2(n-3)}{(n+1)(n+2)} c_{n-1}, n \pi 3
$$

Hence, the
sersies is-

$$
\begin{aligned}
y=c_{0} & \left(1-\frac{2}{3} x^{3}-\frac{2}{45} x^{6}-\cdots\right) \\
& +c_{1}\left(x-\frac{1}{6} x^{4}-\frac{1}{63} x^{7} \cdots \cdot\right) \\
& +x^{2}+\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{45} x^{6}+\cdots
\end{aligned}
$$

where c_{0} and C_{1} are arbitrary constants.
Ans
Q9 (a) Prove that:

$$
x^{2} J_{n} "(x)=\left(n^{2}-n-x^{2}\right) J_{n}(x)+x J_{n+1}(x)
$$

Answer

(9) a). We shall use recurrence formula-

$$
x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x) \rightarrow(1)
$$

Differentiating (1) w,r.t. ' x ', we get-

$$
x J_{n}^{\prime \prime}(x)+J_{n}^{\prime}(x)=n J_{n}{ }^{\prime}(x)-x J_{n+1}^{\prime}(x)-J_{n+1}(x)
$$

$$
x J_{n}^{\prime \prime}(x)=(n-1) J_{n}^{\prime}(x)-x J_{n+1}^{\prime}(x)-J_{n+1}(x)
$$

$$
\text { ar w } x^{2} J_{n}^{\prime \prime}(x)=(n-1) x J_{n}^{\prime}(x)-x^{2} J_{n+1}^{\prime}(x)
$$

$$
-x J_{n+1}(x)
$$

Again using recurrence formula -

$$
x J_{n}^{\prime}(x)=-n J_{n}(x)+x J_{n-1}(x)
$$

writing $(n+1)$ for n, we get-

$$
x J_{n+1}^{\prime}(x)=-(n+1) J_{n+1}(x)+x J_{n}(x)
$$

$$
\longrightarrow(3)
$$

Putting values of $x J^{\prime}(x)$ from el, \& of $x J_{n+1}^{\prime}(x)$ from (3) in (2), we get $x^{2} J_{n}{ }^{\prime \prime}(x)=(n-1)\left[n \operatorname{Jn}(x)-x J_{n+1}(x)\right]$

$$
-x\left[-(n+1) J_{n+1}(x)+x J_{n}(x]\right.
$$

$$
-x J_{n+1}(x)
$$

$0.0 \quad x^{2} J_{n}{ }^{\prime \prime}(x)=\left(n^{2}-n-x^{2}\right) J_{n}(x)+x J_{n+1}(x)$
(Proved)

Q9 (b) Prove that

$$
\int_{-1}^{+1}\left(1-x^{2}\right) \mathrm{P}_{\mathrm{m}}^{\prime} \mathrm{P}_{\mathrm{n}} \mathrm{dx}=0
$$

Where \mathbf{m} and \mathbf{n} are distinct positive integers.

Answer

$$
\begin{aligned}
& \text { (a) b). We have- } \\
& \text { - }(1-x)^{2} \text { Pin Paid } d x \\
& =\left[\left(1-x^{2}\right) p_{m} P_{n}\right]_{-1}^{+1}-\int_{-1}^{+1}\left[P_{n} \frac{d}{d x}\left\{\left(1-x^{2}\right) P_{m} \xi\right] d x\right. \\
& \text {, integrating by pasts taking pr as the } \\
& =-\int_{-1}^{+1}\left[P_{n} \frac{d}{d x} \delta\left(1-x^{2}\right) P_{i n} \xi\right] d x \\
& \text { Now, since Pm is a solution of the legendreits } \\
& \text { eam, thersetore } \\
& \left(1-x^{2}\right) \operatorname{Pom}_{m}^{\prime \prime}-2 x \operatorname{P}_{m}^{\prime}+m(m+1) P_{m}=0 \\
& \text { or } \quad \frac{d}{d x}\left[\left(1-x^{2}\right) P_{m}{ }_{m}\right]=-m(m+1) P_{m} \\
& \text { Tutting this value in ens (1), we get- } \\
& \int_{-1}^{+1}\left(1-x^{2}\right) P_{m}^{\prime} P_{n}^{\prime} d x=-\int_{-1}^{+1}\left[-P_{n} m(m+1) P_{m}\right] d x \\
& =m(m+1) \int_{-1}^{+1} \operatorname{Fn} \operatorname{Pr}_{n} d x \\
& =0 \text {, since } m \neq n \\
& \text { (moved) }
\end{aligned}
$$

Text Books

1. Higher Engineering Mathematics, Dr. B.S. Grewal, $40^{\text {th }}$ edition 2007, Khanna Publishers, Delhi.
2. Text book of Engineering Mathematics, N.P. Bali \& Mannish Goyal, $7^{\text {th }}$ edition 2007, Laxmi Publication (P) Ltd.
